
Proposal: Interactive DJ

Jeffrey Faden
Porter College

jfaden@ucsc.edu

Shiranne Radzinski
Stevenson College

 sradzins@ucsc.edu

Abstract

This document contains a proposal for
a software system that plays music
based on a dialogue with the user and
the computer. Described are the meth-
ods it uses to collect correct data and
send the commands to the music play-
er, including examples of dialogue
and proposed software to enable this
process.

1 Introduction

In brainstorming ideas for a speech system, we
thought about what sort of activities we do on a
day to day basis. One leisurely activity that seems
part of everyone's life is listening to music, espe-
cially by using music players on the computer.
Thinking about how we could apply speech to ap-
plications such as music players, we compared the
use of these programs to talking to a DJ at a party,
or calling one on the radio. We believe that soft-
ware music players can assume the role of a DJ,
with the help of an artificial intelligence system.

2 Purpose

While software music players allow the user total
control over what music is played, DJs have the
advantage to offer additional information about the
music. This can be especially useful when search-
ing for a particular song. For example, a partygoer
could ask a DJ to play a Beatles song without spec-
ifying any additional information, such as the title.
The DJ would then offer some possibly song titles,
and narrow the criteria of the requested song. A
program like iTunes can provide similar function-

ality, but the request must be specific, as if the user
already knows what they are looking for.

An interim program could provide a dialogue
between the user and the music player that would
allow for simpler searching for the correct song,
similar to a conversation with a DJ.

2.1 Functionality

The proposed program would accept requests from
the user and either respond with information for
the sake of clarification, or play a song. In this
sense, the program acts as both a dialogue system
and a music player controller. If the user's goal is
to play a certain track by the Beatles, for instance,
the user could ask the machine to play a track by
the Beatles. Having not been given enough criteria
to select a single track, the program will respond
with relevant questions in order to narrow down
the options, corresponding to attributes such as al-
bum name, genre, year, words in the song title, etc.
Upon finding the correct track, the program will
play the song.

2.2 Examples

In which the user knows the name of
the song and artist:

User: Play Wonderwall by Oasis.
(The program sends the command to play Wonder-
wall by Oasis)

This example demonstrates a direct command,
requiring no further dialogue from the program.
Unless the song cannot be found or there are other
problems such as duplicates or a misinterpretation
of the request, the program will not respond vocal-
ly.

In which the user does not know
which song he wants:

User: Play me a song by the Beatles.
Program: Which one?
User: I don't know.
Program: Do you know which album?
User: Which albums are there?
Program: Help!, Rubber Soul, Abbey Road, the
White Album.
User: I think it's in Abbey Road.
Program: Popular songs from that album are Come
Together and Maxwell's Silver Hammer.
User: What are some other songs from that album?
Program: Because, Carry That Weight, Golden
Slumbers...
User: Play Carry That Weight.
(The program sends the command to play Carry
That Weight by the Beatles)

Throughout this dialogue, the program gains
more and more criteria for the song. It starts with
the Beatles. Upon finding that the user need to
know more data, it will continue asking questions
until the user requests more specific data, or until
the user can provide more data. In this case, the
user asks for more details until he chooses an al-
bum, upon which the program begins to list songs
from the album that have a high play count (an at-
tribute in iTunes' library XML).

In which the user only knows part of
the song title:

User: Play me a song.
Program: Which one?

User: The title has “purple” in it.
Program: Is it Purple Haze by Jimi Hendrix?
User: No.
Program: Then is it Purple Stain by the Red Hot
Chili Peppers?
User: No.
Program: I have no other songs.
User: Actually, the title has “green” in it.
Program: Is it Blue in Green by Miles Davis?
User: Yes.
(The program sends the command to play Blue in
Green by Miles Davis)

This example shows that the user can ask for
part of a song's attribute – in this case, part of the
title. It can also accept corrections, like “actually,”
and will remember that the previous command was
related to the title of the song. If the program finds
a small amount of songs, it will list them one by
one instead of asking for more information to nar-
row the search.

3 Design

This program must use a number of tools for the
various tasks it performs. It must:
• Accept voice input
• Interpret the command
• Query a music database
• Respond with appropriate information
• Control a music player
A diagram of the implementation can be seen in
Figure 1.

recserver Regulus XML
parser

COM

Regulus;
Vocalizer

iTunes

User

Figure 1

user speaks interprets
speech

receives
text,

interprets
command

finds result,
given

criteria

responds
with result

controls
iTunes

plays song

3.1 Implementation

Accepting Voice Input: The program will use Nu-
ance's recserver application to accept voice input.

Interpreting the Command: The program will
use Regulus to break down the elements of the sen-
tence (Bouillon et al, 2006). Once it has deter-
mined the type of sentence, it will either query a
music database and respond with appropriate infor-
mation, or control the music player.

Querying a music database: The program will
parse the XML of iTunes' music library to find rel-
evant songs, artists, etc. The parsing routine will
return songs or other information that fits the crite-
ria of the query.

Responding with appropriate information:
Regulus will then output through Nuance Vocaliz-
er, responding with a statement regarding the songs
the program has found.

Controlling a music player: When given the
correct command, the program will use iTunes'
COM scripting interface to control the player (Ap-
ple Computer, 2006).

3.2 Testing

One prominent feature of iTunes is its ability to
quickly sort through its music database to find rele-
vant songs. Our program should be able to repli-
cate iTunes's functionality through spoken dia-
logue. The program will be successful if it returns
the same data as iTunes does in its contextual
searches, in addition to properly interpreting com-
mands, aiding in the search process, and control-
ling iTunes's player functions.

4 New Features

In comparison to previous dialogue systems we
have seen in Ling 160, this program will combine
many features we have seen, and some we have not
yet covered.

Important methods that we have examined in
class include querying data from a database, direct-
ly executing commands, and interpreting correc-
tions.

New features include adding words to the lexi-
con based on the current data in iTunes's music
database, and making Nuance work with
JavaScript and XML databases.

5 Conclusion

This project could prove to be a valuable resource
for developers and users alike. As an extension to
iTunes's functionality, it can improve the experi-
ence of the everyday music listener in terms of us-
ability and flexibility. For developers, it can func-
tion as a basis for dialogue with a database brows-
er. Overall, this could be a step forward in provid-
ing a substitute for the usual DJ at a party, giving
the listener something more comprehensive and di-
rect.

References
Apple Computer. 2006. iTunes COM Interface Docu-

mentation. <http://www.apple.com>.

Pierrette Bouillon, Beth Ann Hockey, and Manny Rayn-
er. 2006. Putting Linguistics into Speech Recogni-
tion. Center for the Study of Language and Informa-
tion, Stanford, CA.

http://www.apple.com/

	1Introduction
	2Purpose
	2.1Functionality
	2.2Examples
	In which the user knows the name of the song and artist:
	In which the user does not know which song he wants:
	In which the user only knows part of the song title:

	3Design
	3.1Implementation
	3.2Testing

	4New Features
	5Conclusion

